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Abstract—Vehicle-to-Vehicle (V2V) cooperative perception has
become increasingly popular in the field of autonomous driving,
effectively overcoming the inherent limitations of single-vehicle
perception systems, such as limited range and susceptibility to
occlusions. In a V2V system, vehicles in close proximity can
share perception data. To fuse this data, which is collected from
different viewpoints by each vehicle, accurate pose informa-
tion (including position and heading direction) is essential to
transform the received data to the receiving vehicle’s viewpoint.
However, pose errors, often caused by measurement noise or
sensor failures, can lead to severe misalignment during data
fusion, resulting in incorrect object detections and potentially
hazardous decisions in autonomous driving systems. To address
this challenge, we present BB-Align, a lightweight pose recovery
framework that utilizes Lidar Bird’s-eye View (BV) images and
object bounding Boxes for relative pose estimation. Designed
as a plug-and-play solution, the proposed method requires no
additional model training, enabling effortless integration into
existing V2V systems. Our approach uses Lidar-derived BV
images with a Log-Gabor filter-based feature map for effective
image matching despite image sparsity. To reduce errors from
self-motion distortion, we also integrate object bounding boxes
for finer alignment. The proposed method is rigorously evalu-
ated on the V2V4Real dataset—currently the only real-world
V2V dataset. Our approach demonstrates high pose estimation
accuracy, outperforming an existing graph-matching method. It
achieves translation and rotation errors of less than 1 m and
1◦, respectively, in 80% of cases within a 70 m range between
vehicles. Furthermore, by integrating the proposed framework
into cooperative object detection models under serious pose error,
the result shows up to a 2x increase in Average Precision (AP)
compared to those without pose recovery, with more pronounced
improvements in the short range.

I. INTRODUCTION

Autonomous driving, an increasingly popular field, critically
relies on exceptional perception capabilities. However, the
perception system of a single car often falls short in capturing
the complexities of busy and dynamic traffic environments,
plagued by limitations such as short range and occlusions.
Vehicle-to-Vehicle (V2V) cooperative perception, where ve-
hicles in proximity share perception data, has emerged as
a significant solution to mitigate these limitations. Recent
V2V works [1, 2] have demonstrated remarkable performance
in tasks like 3D object detection and tracking, significantly
surpassing the performance of single-car systems. Neverthe-
less, this data-sharing approach presents challenges, includ-
ing communication bandwidth limitation and latency in data

Fig. 1: Illustration of the impact of pose error on data fusion in
V2V cooperative perception. The points with different colors
represent Lidar scans from different cars, while the bounding
boxes indicate objects detected by the corresponding cars.

delivery, which can adversely affect cooperative perception
performance.

One of the most critical challenges in cooperative perception
is the error in positioning information (including GPS coor-
dinates and heading direction), commonly referred to as pose
error. Since perception data from different vehicles is captured
from different viewpoints, pose information is required to
transform the viewpoint of the shared data to align with the
view of the ego car (the car receiving the data) for data fusion.
However, this information can be corrupted due to various
reasons, such as GPS device failure, measurement noise,
and transmission errors. The corrupted pose can significantly
diminish the perception accuracy. As illustrated in Fig. 1, when
the ego car employs erroneous pose information to fuse Lidar
data received from another car, the resulting misalignment
causes the ego car to incorrectly detect objects at inaccurate
locations, potentially impairing the vehicle’s driving strategy.

To address the challenge of pose error in V2V cooperative
perception, existing studies [2, 3, 4] have explored developing
robust neural network models to cope with such errors. A
more recent work [5] integrates agent-object pose graph op-
timization for error correction. However, these approaches all
involve extensive neural network training and often struggle
to maintain their efficacy in scenarios that they have not been
explicitly trained for. On the other hand, rigid registration, as a
traditional, non-neural-network-based approach, is commonly
employed in the field of robotics. The method matches two
overlapping datasets (like Lidar points or images) to determine
the relative pose. However, these methods typically require
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similar sensor configurations. In the context of V2V sys-
tems, where vehicles may be equipped with different Lidar
systems, the heterogeneous sensor setup poses a significant
hurdle, frequently preventing traditional registration methods
from delivering consistent results. Furthermore, applying 3-
D registration in the V2V system requires transmitting the
entire Lidar point cloud between vehicles, which can lead to
significant communication bandwidth consumption.

To provide a dataset-independent and bandwidth-conserving
solution, in this paper, we present BB-Align, a two-stage
Lidar Bird’s-eye view image and object bounding Box-based
pose recovery framework for V2V cooperative perception. To
estimate the relative pose between two cars, our proposed
method first employs an image-matching approach on the
Lidar Bird’s-eye View (BV) images for a high-level alignment.
Subsequently, by aligning object bounding boxes detected by
both cars, the method can achieve finer alignment. Designed
as a plug-and-play module, our method requires no additional
model training and can be easily integrated into existing
V2V systems. Building on an image-matching technique, our
method operates independently of prior pose information and
is capable of recovering pose errors at any severity. Overall, the
main contributions of this paper are summarized as follows:

• We design a two-stage pose recovery framework for
V2V cooperative perception. The initial stage utilizes
the Lidar BV images obtained from different vehicles to
perform image matching. To address the sparsity of BV
images, we use a Log-Gabor filter-based feature map,
the Maximum Index Map (MIM) [6], to identify subtle
features as keypoints for accurate image matching.

• To further achieve finer alignment, our framework em-
ploys a second-stage refinement process to mitigate errors
caused by self-motion distortion. This stage utilizes the
bounding boxes from object detection. By aligning the
overlapped but initially unaligned boxes, we can further
enhance the accuracy of pose estimation.

• We conduct a rigorous performance evaluation of the
proposed method on the V2V4Real dataset [7], currently
the only available real-world V2V dataset. The results
demonstrate remarkable accuracy in pose estimation.
Furthermore, when applied to cooperative object detec-
tion tasks, our method significantly improves Average
Precision (AP) compared to scenarios without the pose
recovery framework.

II. RELATED WORK AND BACKGROUND

Cooperative Perception. Due to challenges such as lim-
ited range and occlusion in single-car perception, cooperative
perception—where cars in proximity share sensory data—
has garnered significant attention, as highlighted in surveys
like [8, 9]. Most research in this field has been focused on
exploring ways of fusing different perception data, such as
maps [10], sensory data [11], or processed features [12, 2, 1].
Fig. 2 illustrates the different fusion methods. The early
fusion that simply combines raw Lidar points was attempted
in pioneer works like Cooper [11]. Despite its potential,
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Fig. 2: Different fusion methods for cooperative perception.

early fusion raises concerns regarding high communication
bandwidth cost for transmitting raw data (like Lidar points).
To conserve bandwidth while sharing important observations,
intermediate fusion, which shares neural network-generated
intermediate feature maps, has become increasingly popular.
Various types of feature maps and network structures have
been investigated [12, 13, 2, 1, 14, 15]. For instance, F-
Cooper [12] employs a simple maxout operation to process
feature maps from two cars; V2VNet [13] uses a spatially
aware graph neural network (GNN); AttFuse [15] integrates
a self-attention mechanism. Recently, with the advent of the
powerful Transformer architecture, works like V2X-ViT [2]
and coBEVT [1] have adapted it to address noise issues and
enhance feature extraction. In contrast, late fusion, which
though requires the least bandwidth cost by only sharing detec-
tion results, has been shown to underperform in experiments,
as evaluated in benchmarks like [7, 16].

Pose Calibration Solutions for V2V. When fusing data,
erroneous pose information can critically compromise cooper-
ative perception performance, potentially jeopardizing driving
strategies in autonomous driving. To address this issue, previ-
ous works [2, 3, 4] have focused on developing robust neural
networks incorporating pose error correction components. For
instance, [3] designed a module specifically to predict the
relative pose error between cars, while [2] adopted a multi-
agent approach to capture spatial relationships between agents,
thereby reducing localization noise. More recently, CoAlign
[5] has utilized agent-object pose graph optimization to correct
pose errors, demonstrating resilience to a certain degree of
pose inaccuracy. However, these neural network-based meth-
ods, being dataset-specific, often struggle in untrained sce-
narios and require model re-training for different application
domains, which may not be practical or efficient. In contrast,
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our proposed work is designed as a stand-alone plug-and-play
module that can effortlessly integrate with any fusion model or
method. It operates independently of prior pose information,
offering enhanced resilience to pose errors at any degree.

3-D Rigid Registration. For recovering the relative pose
information, rigid registration is a commonly used solution
in robotics, particularly in SLAM (Simultaneous Localization
and Mapping), In the domain of 3D point-set registration, a
classical approach for estimating the relative pose between
two Lidar scans1 is Iterative Closest Point (ICP) [17]. ICP
aligns two scans iteratively by minimizing the distance be-
tween point clouds. Building upon this, global registration
techniques [18, 19] have developed more effective methods
for point cloud alignment. With the advent of neural networks,
recent approaches [20, 21, 22] have demonstrated exceptional
performance in registration for Lidar scans. However, since
they are training-based, they often exhibit reduced effective-
ness in scenarios that differ from their training environments.
Furthermore, in the V2V context, employing Lidar points for
pose estimation involves transmitting entire point clouds, en-
countering the same bandwidth concern as early fusion meth-
ods. Therefore, in our pursuit to develop a dataset-independent
method and also to minimize bandwidth consumption, 3-D
registration is not an ideal choice for V2V pose recovery.

2-D Image Matching. Leveraging Bird’s-eye View (BV)
images from point clouds offers a bandwidth-efficient alterna-
tive to 3-D point-set registration that can estimate the relative
pose on the ground plane. Image matching has been well-
established over decades [23], with traditional methods like
SIFT (Scale Invariant Feature Transform) [24] focusing on
detecting keypoints and matching them. However, the sparsity
of Lidar-generated BV images presents significant challenges
for these methods, often failing to detect meaningful features.
The use of Log-Gabor filters has shown promise in feature
extraction for both optical satellite and Lidar-generated im-
ages [25, 26], with recent studies adapting this technique for
BV image-based applications [27]. Nevertheless, the dynamic
nature of V2V scenarios, with varying sensor configurations
and vehicle movements, poses unique challenges to these tech-
niques. To overcome these challenges, this paper introduces
a novel two-stage design integrating BV images and object
bounding boxes for precise alignment, effectively addressing
the limitations of traditional image matching methods.

Graph Matching. Graph matching techniques construct
graphs with detected objects as nodes and the distances
between them as edges, enabling the estimation of relative
pose transformations between observations from different ve-
hicles. Notably, VIPS [28] employs a spectral-based matching
approach tailored for a Vehicle-to-Infrastructure (V2I) setup.
Another recent study [29] leverages intra-agent geometri-
cal context to enhance feature descriptiveness for matching.
However, these methods depend heavily on the dense spatial
patterns formed by surrounding traffic and struggle in light

1A scan refers to a set of cloud points collected by a lidar sensor during
one single scan of the surroundings.

traffic conditions. Our experimental results, detailed later,
demonstrate that our proposed method consistently outper-
forms graph matching across various traffic scenarios.

III. THE SETUP OF POSE RECOVERY FOR V2V

Problem Description. In the context of V2V cooperative
perception, we assume that two vehicles, each equipped with
lidar sensors, are capable of exchanging sensory data along
with their pose information. When the ego car receives per-
ception data from another vehicle, it utilizes the informed pose
to appropriately transform the received data to its own point
of view. This transformed data is then integrated with the
ego car’s own data. However, a corrupted pose can critically
compromise this data fusion process. Our proposed work
aims to recover the pose by estimating the relative pose for
data fusion while minimizing the need for additional data
transmission to conserve bandwidth.

The relative pose between vehicles comprises two compo-
nents: translation and rotation. Translation is represented by
a 3-D Cartesian coordinate (x, y, z), indicating the positional
shift from the other car to the ego car. Rotation is described as
a tuple of three degrees (α, β, γ), corresponding to yaw, roll,
and pitch, which denote the angular differences in orientation
between the two cars. However, for ground vehicles like cars,
roll, pitch, and the z coordinate typically remain constant. The
movement of cars is predominantly on the xy plane (ground),
which primarily involves changes in x, y, and yaw. Based
on this intuition, our work proposes a bird’s-eye view (BV)
approach, effectively transforming the challenge of 3-D pose
recovery into a 2-D problem.

Pose Recovery. In the context of two-car cooperative per-
ception, for the application of our pose recovery method,
the other car needs to transmit its BV image and object
bounding boxes from its objection detection model to the
ego car. Due to the highly compressed nature of BV im-
ages, the communication cost associated with transmitting this
information is significantly lower compared to transmitting
raw Lidar data or even processed feature maps. Upon receipt
of this information, the ego car can estimate the relative
pose from the other car to the ego car. This output is a
3-degree of freedom transformation denoted as (α, tx, ty),
where α represents rotation and (tx, ty) denote translation.
Given this 2-D transformation, we can further construct the
corresponding 3-D transformation. This transformation can
be represented as a 3-D homogeneous transformation matrix.
As aforementioned, given the application scenarios of ground
vehicles, we assume pitch (β), roll (γ), and the translation on
the z-axis (tz) mostly remain constant. By combining all these
parameters, we can recover the transformation matrix T which
is defined as

T =


tx

R(α, β, γ) ty
tz

0 0 0 1

 (1)
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Fig. 3: Overview of the proposed two-stage pose recovery framework. Colored arrows and trapezoids represent data paths
and modules in different cars, with red for the ego car and blue for the other car. The WiFi icons denote the information
transmission from the other car to the ego car. The first stage applies image matching on BV images generated from both
cars. It utilizes a Log-Gabor filter-based feature map (small images inside of the upper trapezoid) to enhance image matching.
Although the initial matching results may contain minor errors, the second stage employs object bounding boxes to further
refine and correct any remaining misalignments.

where R(α, β, γ) can be expressed as
cos(α) cos(β)

cos(α) sin(β) sin(γ)

− sin(α) cos(γ)

sin(α) sin(β) cos(γ)

+ cos(α) sin(γ)

sin(α) cos(β)
sin(α) sin(β) sin(γ)

+ cos(α) cos(γ)

cos(α) sin(β) cos(γ)

− sin(α) sin(γ)
− sin(β) cos(β) sin(γ) cos(β) cos(γ)


(2)

Note that the bold variables are estimated from our proposed
work while the non-bold variables are pre-defined constant
values. With this estimated transformation matrix, we can
transform the received perception data to the viewpoint of
the ego car. For example, assuming a point P = (x, y, z) is
received from the other car, we can compute its transformed
position P̂ in the view of the ego car as

P̂ = (x̂, ŷ, ẑ) = ((x, y, z, 1)× TT )[: 3] (3)

where the operator [: m] means extracting the first m di-
mension. In the next section, we will explore in detail the
technical aspects of employing our method to estimate the
transformation matrix T .

IV. THE PROPOSED 2-STAGE FRAMEWORK

In this section, we elaborate on the design details of our
proposed BB-Align framework. The structure of the framework
is visualized in Fig. 3. As depicted, our method employs a
two-stage approach. The first stage is based on BV image
matching, indicated by the upper trapezoid in Fig. 3, which
will be discussed in detail in Section IV-A. Followed by Sec-
tion IV-B, we will introduce the second-stage object bounding
box alignment, as illustrated by the lower trapezoid in the

diagram. As a summary, we will conclude with an overview
of the algorithm in Section IV-C.

A. BV Image Matching

Generating BV Image. Given a set of 3-D points P =
{Pi|i = 1, .., N} where Pi = (xi, yi, zi) ∈ R3 and N is the
number of points, there exist several approaches for generating
BV image [30, 31, 27]. For our specific objective of pose
recovery, we want to utilize tall objects such as buildings and
trees as salient landmarks for matching. Therefore, we adopt
the height map approach [30]. To generate a BV image from
P , we first partition the points into 2-D cells on the ground
plane (xy) with a resolution parameter c (cell size). Assuming
the Lidar range is R, we define a cell set within the region
[−R ≤ xi ≤ R,−R ≤ yi ≤ R] as C = {Cuv | u, v =
1, ..,H}, where H = 2R

c . A BV image B with dimensions
(H,H) is generated using the maximum height in each cell
as the pixel intensity. The intensity of a pixel Buv in this BV
image is defined as

Buv = max
Pi∈Cuv

(zi) (4)

Compared to the density map approach [31], which uses
point density for pixel intensity, the height map approach not
only enables the use of stationary high objects as reliable
landmarks but also inherently filters out ground-hitting points.
These ground points typically provide no meaningful informa-
tion and can be detrimental to effective image matching.

Creating Feature Map. Given a pair of 2-D images, the
standard process for image matching usually includes four
steps: 1) detecting keypoints, 2) computing feature descriptors,
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Fig. 4: Step-by-step illustration of BV image matching, plotted with real-world data from two cars driving 45 meters apart.
Subfigures (a), (b), and (c) depict the point cloud, BV image, and feature map MIM generated from one car, respectively.
Correspondingly, subfigures (d), (e), and (f) represent the same components from the other car. Subfigure (g) displays the
matching results, with lines connecting the matched keypoints.

3) matching keypoints based on the descriptors, and 4) estimat-
ing the transformation between matched keypoints. However,
the extreme sparsity of Lidar BV images poses significant
challenges, particularly in detecting keypoints and computing
effective descriptors. To address this challenge, inspired by
the previous work [25, 27], we adopt a Log-Gabor filter-based
approach to generate feature maps for BV images.

The Log-Gabor filter is an effective tool in texture analysis
and image representation, primarily due to its capability in
capturing fine texture features at different orientations. This
characteristic is crucial for identifying key features such as the
edges of buildings and tree tops in Lidar BV images. Given a
BV image B = {Buv | u, v = 1, ..,H}, we can create a feature
map called Maximum Index Map (MIM) based on [6, 25]. To
do that, we first convert the image into the polar coordinates
Bρθ with

ρ =
√
u2 + v2,

θ = arctan 2(v, u). (5)

In the spatial domain, the response of a 2-D Log-Gabor
filter is given by:

L(ρ, θ, ρ0, θ0) = exp

(
(−(ρ− ρ0))

2

2σ2
ρ

)
· exp

(
−(θ − θ0)

2

2σ2
θ

)
(6)

where ρ0 and θ0 are parameters of the filter, which represents
the scale and the preferred orientation respectively. σρ, σθ are
bandwidth hyperparameters. Applying such a filter to an image
facilitates the extraction of features at the specific scale, as
determined by ρ0, and at a particular orientation, as indicated
by θ0. This method is particularly effective in isolating image
characteristics that are significant at certain spatial frequencies
and orientations. To capture features across different scales
and orientations, we can apply a bank of filters with different
parameters. Let O = [θo = (o − 1) · π/No | o = 1, . . . , No]

be an array of orientations and R = [ρs | s = 1, . . . , Ns] an
array of scales2, where Ns and No are the number of scales
and orientations, respectively. To capture image characteristics
in a variety of scales and orientations, we can pass the image
through all filters in the filter bank. In this filter bank, by
specifying indices s and o, a single filter can be selected, and
its response, redefined by substituting f0, θ0 in Equation 6, is
given by

L(ρ, θ, s, o) = exp

(
− (ρ−R[s])2

2σ2
ρ

)
· exp

(
− (θ −O[o])2

2σ2
θ

)
(7)

By applying this filter to a BV image Bρθ, the amplitude of
Bρθ under this specific filter L(ρ, θ, s, o) can be expressed as

A(ρ, θ, s, o) = ∥Bρθ ∗ L(ρ, θ, s, o)∥2 (8)

where ∗ denotes the convolution operation. Then, the ampli-
tude for a certain orientation over all scales can be obtained
by summing up the amplitudes at all scales with that same
orientation, as

A(ρ, θ, o) =

Ns∑
s=1

A(ρ, θ, s, o) (9)

Finally, a feature map, Maximum Index Map (MIM), is
computed by identifying the index of the orientation that yields
the maximum amplitude, which can be expressed as

MIM(ρ, θ) = argmax
o

A(ρ, θ, o) (10)

Inherently, the value of the Maximum Index Map (MIM) at
a specific location in the image indicates the direction/angle
of the dominant features observed at that point. This attribute
is crucial in identifying subtle features in sparse images, such
as recognizing disconnected lines as edges, isolated blobs as

2The setting of ρs can be found in [32].
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tree tops, and similar elements.
Detecting Keypoints & Computing Descriptors. By Uti-

lizing keypoint detectors such as FAST [33], we can identify
keypoints, including edges and corners. For each detected key-
point, we compute a descriptor (a vector) using its surrounding
pixels in the feature map. This process starts with defining a
square area around the keypoint, known as a patch, covering
an area of J × J pixels. This patch then is subdivided into
l × l grids. Within each grid, a histogram h(o) is calculated,
representing the orientation frequency on the MIM. As a result,
a feature vector with dimensions l × l ×No can be obtained.

It is important to note that while the MIM provides scale-
invariant features, it does not inherently offer rotation in-
variance; rotations change orientations, consequently affecting
the MIM values. To address this limitation, we integrate
the Bird’s-eye View Feature Transform (BVFT) descriptors
designed in [27]. This design adopts a strategy akin to that
used in the classic computer vision method ORB [34], which
computes the dominant orientation within a patch and then
rotates the patch to align its dominant orientation with a fixed
direction like 0◦. As a result, the pixel values in MIM can
remain constant regardless of rotation.

Matching Keypoints & Estimating Transformation. Once
the descriptors for keypoints from two BV images are com-
puted, we match these keypoints based on the similarity of
their descriptors. This similarity is measured by the Euclidean
distance between the descriptors. With the matched keypoints
in pairs and their corresponding positions, we employ the
RANdom SAmple Consensus (RANSAC) algorithm to esti-
mate the relative pose between the two images. RANSAC
typically returns a 2-D homogeneous transformation matrix
and the number of inliers—keypoints that align within a pre-
defined error threshold under this transformation. In practical
applications, the count of the inliers can serve as an indicator
of the success of the match. Overall, this image-matching
procedure is illustrated in Fig. 4. Notably, despite the extreme
sparsity of the BV images (as illustrated in Fig. 4(b) and
Fig. 4(e)), the MIM-based approach can effectively capture the
thin lines as keypoints which are the edges of the buildings.

B. Fine Alignment using Object Bounding Box

Self-Motion Distortion. While BV image matching is
effective in identifying and aligning prominent landmarks, its
accuracy is compromised by minor errors, primarily from self-
motion distortion in Lidar point clouds. Self-motion distortion
occurs due to the movement of the Lidar sensor during the
data acquisition process. To elaborate, capturing a complete
scan of Lidar points is not instantaneous but requires a certain
amount of time. During this period, if the sensor moves, its
viewpoint changes accordingly. As a result, the points captured
at different moments during the scan correspond to slightly
different viewpoints. This variance in viewpoints leads to
discrepancies in the data, known as self-motion distortion. In
V2V scenarios, where cars often travel at different speeds and
in varying directions, this issue becomes more pronounced.
As a result, while the successful alignment of prominent

Fig. 5: Misalignment caused by self-motion distortion. The
point clouds from the two cars, colored in green and red, are
aligned using the BV image match (stage 1) alone. The 3-D
bounding boxes, indicated in blue and red, highlight objects
(cars) detected by different cars. The arrows emphasize the
well-aligned building edges. The dashed box, with a zoom-in
view inside the solid box, reveals minor misalignments in the
cars’ positions.

large objects such as buildings and trees can be achieved,
there remains a discrepancy when attempting to align smaller
objects, like cars. This challenge is illustrated in Fig. 5 using
real-world data.

Traditional solutions to mitigate self-motion distortion in-
volve applying an odometry algorithm to estimate the move-
ment of the sensor and then using it to recover non-distorted
data. However, these methods require continuous computation
on each Lidar scan collected, which is computationally in-
tensive. Another approach is using the Iterative Closest Point
(ICP) algorithm for point-to-point matching to correct mis-
alignments. Nevertheless, this method encounters challenges
when the same object is observed from different viewpoints.
For instance, if two cars in the V2V system observe another
target car from the front and the rear, merging these points
directly on a point-to-point basis would be erroneous.

Fig. 6: (a) shows the object bounding box matching process
from the bird’s-eye view. The red and green boxes represent
objects detected from different cars. The double-headed arrows
indicate the pairing of corners on the overlapped boxes. (b)
shows the aligned result.

Fortunately, in the cooperative perception setup, the avail-
ability of object detection results provides valuable infor-
mation about the positions and approximate dimensions of
detected objects (vehicles), even when they are only partially
observed. The access to object detection data enables us to
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Algorithm 1: 2-Stage Pose Recovery
1 Both Cars: Generate BV images Bother and Bego using

Equation (4).
2 Both Cars: Perform object detection to obtain prediction

results and project the 3-D object bounding boxes as 2-D
BV boxes Bother and Bego.

3 Other Car: Send Bother and Bother to the ego car
4 Ego Car:
5 for c ∈ {’ego’, ’other’} do
6 Compute MIMc from Bc using Equations (5) to (10).
7 Detect keypoints Kc and their positions Pc from Bc.
8 Compute the descriptors Dc from MIMc for Kc.

9 Find similar descriptors between Dother and Dego and record
the corresponding matching indices (Iother, Iego).

10 Define source points Psrc = Pother[Iother] and destination
points Pdest = Pego[Iego].

11 Estimate 2-D transformation matrix Tbv from Psrc to Pdest.
12 Apply Tbv to transform Bother to Bother-trans under the view of

the ego car.
13 Identify overlapping bounding boxes between Bother-trans and

Bego, extracting corresponding corners Cother-trans and Cego.
14 Estimate 2-D transformation Tbox from Cother-trans to Cego.
15 Calculate the combined transformation T2D = Tbox × Tbv .
16 Extract rotation α, and translations tx, ty from T2D .
17 Construct the 3-D transformation T3D using Equation (1).

utilize these objects as anchors for performing more precise
alignment. After applying the transformation result from the
initial BV image match, the discrepancy is typically reduced
to just 2 or 3 meters. In the majority of cases, the object
bounding boxes representing the same targets, as detected by
both cars, typically already exhibit significant overlap. Then,
by using the corresponding corners of these overlapped boxes
as matched keypoints, we can apply RANSAC to estimate
another transformation to further align the boxes. In practical
implementation, the corners of bounding boxes are stored as
a sequence of points, consistently ordered in accordance with
the 3-D Cartesian world coordinate system. This consistent
ordering ensures that there is no confusion in matching the
corresponding corners of the bounding boxes. Additionally,
since our alignment is concentrated on the xy plane, we can
simplify this task by projecting these bounding boxes as the
bird’s-eye view 2-D rectangles. The corner paring process and
the aligning result are illustrated in Fig. 6.

C. Algorithm Overview

Algorithm 1 delineates the complete procedure of the pro-
posed method. Note that the functions required to execute
this algorithm, such as estimating the transformation given
source and destination points, are standard geometric opera-
tions. Their implementations are readily available in computer
vision libraries like OpenCV. Overall, through this two-stage
algorithm, we can effectively recover the relative pose from
the other car to the ego car. This is achieved without the need
for prior pose knowledge and can recover pose error at any
severity.

V. PERFORMANCE EVALUATION

In this section, we conduct a comprehensive performance
evaluation of our proposed framework using a real-world V2V
dataset. The experimental study aims to quantify the accu-
racy of the proposed method and explore the various factors
that influence this accuracy. Additionally, we integrate our
framework into existing V2V cooperative perception models
to assess how the recovered pose information enhances object
detection when faced with corrupted pose data. Finally, given
our method’s two-stage design, we conduct an ablation study
to verify the individual contributions of different components
to the overall system’s efficacy.

Dataset. Most existing datasets for V2V cooperative percep-
tion, such as OPV2V [15] and V2Vset [2], are generated from
virtual environments. While these simulations can provide
realistic-looking road scenes, they often fall short in replicating
the noisy, low-quality, or other undesirable conditions com-
monly encountered in real-world settings. Therefore, we have
chosen to use the only real-world V2V dataset, V2V4Real [7],
for evaluating our method. This dataset comprises 20K frames
of Lidar scans from two vehicles, collected over 19 hours of
driving. However, not all frames in this dataset are applicable
for evaluating pose recovery. Instances where two cars exhibit
minimal or no overlap in perception are not conducive for
pose recovery. This technical limitation arises due to factors
such as significant distance between the vehicles, occlusions,
or divergent headings, which prevent sharing common obser-
vational data. These cases are therefore excluded from our
study. We selected 12K frames out of the total 20K, focusing
on those where at least two common cars are observed by
both vehicles. This selection assures a sufficient overlap in
the observed views of both cars.

Model Setup. Our implementation of BV image matching
is based on the source code of previous work [27] and then
integrated into the codebase of V2V4Real [7]. We configure
the Log-Gabor filter for generating the MIM feature map with
Ns = 4 scales and No = 12 orientations. Feature descriptors
are computed using a patch size of J = 96 and a grid size
of l = 6. For bounding box prediction in object detection, we
evaluate two models: the PointPillar-based F-Cooper [12] and
the self-attention-enhanced coBEVT [1]. Though these models
were originally designed as V2V fusion methods to combine
feature maps from two cars, in our case, they are utilized
as single-car object detection models, omitting the feature
fusion aspect. Unless specified otherwise, coBEVT is used
as the default object detection model. All experiments were
conducted on a desktop equipped with an Intel i9-13900K
CPU and an Nvidia Quadro A6000 GPU.

A. Pose Recovery Accuracy Study

Experiment Setup. In our experiments, for each pair of
data from two cars comprising Lidar scans and object detection
bounding boxes, we apply our proposed framework to compute
the transformation matrix from the other car to the ego car.
To calculate the accuracy, we compare our estimated pose
parameters tx, ty , and α (in Equation 1) with the ground

7



truth provided in the dataset. Furthermore, the accuracy is
quantified using two metrics: Translation Error, which is
the absolute difference on positional shift tx, ty , and Rotation
Error, which measures the absolute angular difference α.
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Fig. 7: Pose recovery accuracy comparison.
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Fig. 8: Pose recovery accuracy w.r.t. commonly observed cars.
Each box plot with whiskers represents the 10th, 25th, 50th,
75th, and 90th percentiles of the data.

Comparison. Most existing work in pose recovery for
V2V relies on neural network training, whereas our approach
employs a non-learning-based, plug-and-play methodology.
Regarding image matching, we experimented with traditional
methods like SIFT [24] and ORB [34]. However, these meth-
ods proved to be ineffective, failing to produce meaningful
results. We selected to compare our work against another non-
learning-based method, VIPS [28], which employs a graph
matching approach to establish one-on-one correspondences
between sets of objects detected by two different cars and
then estimate the relative pose between the pairs. As shown in
Fig. 7, our method outperforms the graph matching method,
VIPS, particularly in terms of translation error. Approximately
60% of our pose estimations exhibit errors of less than 1
meter, compared to only about 30% for the graph matching
method. The graph-matching method significantly depends on
the unique spatial distributions formed by many surrounding
vehicles. To validate this dependency, we illustrate the trans-
lation error comparison under varying counts of commonly
observed cars in Fig. 8. In scenarios with sparse traffic (e.g.,
fewer than three surrounding vehicles), the graph-matching
method struggles to identify effective matching features. As

0 1 2 3 >4
Translation Error (m)

0.00

0.25

0.50

0.75

1.00

C
D

F

0 1 2 3 >4
Rotation Error ( )

0.00

0.25

0.50

0.75

1.00

 

Number of Inliers (BV)
[0, 25)
[25, 50)

[50, 100) [100, )

(a) w.r.t. Inliersbv.
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Fig. 9: Pose recovery accuracy w.r.t. Number of Inliers.

the number of surrounding vehicles increases, there is a
noticeable decrease in translation error. However, due to the
numerical instability associated with eigendecomposition in
spectral graph matching, the overall accuracy of this method
remains inferior to that of our proposed method. Note that
the rotation error from both methods is comparable, as each
method effectively captures the orientational features, which
are prominently manifested by the traffic pattern and landscape
along the road direction.

Success Rate. First, we examine the chances of successful
pose recovery using our method. To determine the success of
a recovery attempt, we rely on the number of inliers output
by the RANSAC algorithm, which counts the keypoints that
are aligned within a predefined error threshold. We denote
the inlier count from BV image matching as Inliersbv, and
the count from bounding box alignment as Inliersbox. These
inlier counts serve as indicators to assess the confidence of the
pose recovery result. Fig. 9 shows the Cumulative Distribution
Function (CDF) of translation and rotation errors for varying
inlier counts in both matching processes, with Fig. 9(a) for
BV image matching and Fig. 9(b) for box alignment. As
observed, the accuracy improves with an increase in inliers.
Specifically, where Inliersbv > 100 or Inliersbox > 20, over
90% of cases have translation and rotation errors less than
1m and 1 ◦. On the contrary, with low inlier counts, like
Inliersbox < 25 or Inliersbox < 7, the result shows significantly
lower accuracy. Based on this observation, we set an empirical
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Fig. 10: Pose recovery accuracy w.r.t. distance (m).

threshold: Inliersbv > 25 and Inliersbox > 6 to define a suc-
cessful recovery. With this criterion, out of a total 6,145 data
pairs (12,290 frames), our method can successfully recover
pose information for 80% (4,915 pairs) of data. Unsuccessful
pose recoveries typically occur in scenarios where there are
insufficient landmarks available for keypoint detection, such
as in vast open areas without prominent objects.

In the subsequent analysis, we focus on examining the
accuracy on the successful pose recoveries and investigate
various factors that may influence this accuracy.

Distance. Fig. 10 illustrates the accuracy variation under
different the distance between two cars. Notably, when the dis-
tance is within 70m, approximately 80% of the data exhibits
an estimated pose error of less than 1m and 1◦. However,
as the distance exceeds 70m, while the translation accuracy
decreases, the rotation error remains around 1◦ for about 70%
of data, This observation aligns with our expectations, as
increased distances lead to sparser overlapped observations be-
tween the two cars, complicating the image matching process.
In typical V2V scenarios, close-range cooperation between
cars is often more critical, as it can influence immediate
driving actions. The noteworthy performance of our method
within a 70m range is particularly significant, despite the less
impressive results at longer distances.

B. Stage-by-Stage Investigation

Given the two-stage design of our system, we undertake on
a stage-by-stage investigation of the two pivotal components:
BV image matching and box alignment. This investigation is
centered on examining the impact of the determining factors
on each stage.

Impact of Distance on BV Image Matching. As indicated
in the previous result in Fig. 10, our method shows sensitivity
to longer distances. In Fig. 11, we present a more granular
analysis of the accuracy of BV image matching alone across
various distance categories. As expected, shorter distances
correlate with higher accuracy. However, an observant reader
might note that even in the most favorable scenario (distances
less than 20m), the accuracy is not better than the overall
performance of the case [0, 70)m depicted in Fig. 10. This
highlights the necessity of the second-stage alignment. More
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Fig. 11: Accuracy of BV image matching w.r.t. distance (m).

detailed findings on this aspect will be discussed in our
ablation study later in Section V-D.
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Fig. 12: Accuracy of box alignment (upon BV image match-
ing) w.r.t. the number of commonly observed cars between the
two vehicles.

Impact of Number of Common Cars on Box Alignment.
For the second-stage alignment in our method, we leverage the
cars commonly detected by both vehicles to achieve a finer
alignment. Therefore, it is important to investigate how the
number of commonly observed cars affects the box alignment
accuracy. Fig. 12 presents the accuracy across different counts
of commonly observed cars. As anticipated, a higher number
of common cars, providing more bounding boxes for align-
ment, correlates with increased accuracy. While the accuracy
deteriorates quickly with less than 3 cars observed, there are
still 50% of cases exhibiting less than 1m error. We argue
that higher accuracy is particularly crucial for safety in busier
traffic conditions—a scenario where our method excels in.
Remarkably, when more than 10 cars are observed, over 90%
of the cases have an error under 0.3m and 0.8◦.

Impact of Object Detection Model on Box Alignment.
Given that the second-stage box alignment relies on bound-
ing boxes produced by the object detection model, we also
investigate the impact of the choice of this model. Fig. 13
contrasts the results obtained using coBEVT and F-Cooper as
the detection models. The findings indicate that the choice of
model plays a minor role in the overall performance of our
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Method AP@IoU=0.5/0.7
σt = 2m,σθ = 2◦ Pose Recovered

Overall 0-30m 30-50m 50-100m Overall 0-30m 30-50m 50-100m
Early Fusion 21.2/8.9 34.4/14.8 19.6/9.9 3.5/0.9 39.6/18.0 67.1/36.5 30.5/13.0 7.1/1.3
Late Fusion 18.7/9.3 33.1/18.9 16.8/7.9 2.5/0.6 33.9/12.9 63.0/28.3 27.0/9.2 4.7/0.7
F-Cooper 26.5/14.3 43.0/25.0 23.5/12.3 3.6/1.3 40.8/18.1 70.6/35.7 29.6/11.8 7.1/1.1
coBEVT 31.1/17.8 52.6/32.0 27.2/15.6 4.7/1.9 38.9/14.7 71.5/29.4 28.6/11.4 5.2/0.9

TABLE I: Comparison of object detection results under corrupted pose, with and without our pose recovery framework.
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Fig. 13: Pose recovery accuracy w.r.t. distance (m).

system. This suggests that our method is relatively independent
of the object detection models, demonstrating its compatibility
and potential for integration with various V2V systems.

C. Objection Detection Improvement

Experiment Setup. In this section, we apply our proposed
framework to the task of object detection within the context
of V2V cooperative perception. In this setup, the ego car uses
the informed pose information from the other car to transform
the perception data that is fed into the detection models for
cooperative prediction. We examine various fusion methods,
including early fusion (combining raw Lidar data), late fusion
(merging predicted bounding boxes), and intermediate fusion
(integrating feature maps from neural networks). The imple-
mentations for these methods are sourced from the V2V4Real
repository. For intermediate fusion, we use F-Cooper [12] as
an example of earlier work and coBEVT [1] as a representative
of recent advancements in this field.

To evaluate our framework, we introduce errors into the
pose information used by all fusion models. This is achieved
by adding a zero-mean Gaussian noise with the standard
deviations of σt = 2m for translation and σθ = 2◦ for
rotation. Then the models are tested both with and without
the pose recovery framework. Table I shows the Average
Precision (AP) with different Intersection Over Union (IoU)
across various scenarios. For a more comprehensive analysis,
we further categorize and break down the results based on the
distances between the two cars.

As observed, the introduced noise significantly impairs
the performance of all methods. With an advanced neural
network design, methods like F-Cooper and coBEVT exhibit a
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Fig. 14: Accuracy w/ and w/o the box alignment.

degree of resilience against this noise, albeit still demonstrat-
ing unacceptable performance, with none method maintaining
an Average Precision (AP) above 35.0/20.0 for IoU=0.5/0.7.
However, after integrating our pose recovery framework, it
leads to a dramatic improvement across all methods and
distances. This enhancement is especially pronounced in early
and late fusion methods, nearly doubling their AP scores
at IoU=0.5. Notably, the improvement in the close-range
scenarios (0-30m) is even more exciting, with AP@IoU=0.5
scores across all methods exceeding 60.0, and some reaching
above 70.0. While the enhancements at mid and long ranges
are less substantial, this trend aligns with our earlier analysis
regarding the impact of distance on pose recovery accuracy.
Nevertheless, the significant boost in AP, particularly in short-
range scenarios, is of practical importance, as these are the
conditions where high detection accuracy is demanded for safe
and effective driving decision-making.

D. Ablation Study

To evaluate the effectiveness of the second-stage box align-
ment, Fig. 14 presents a comparison of pose recovery accuracy
with and without the second-stage alignment. Notably, the
exclusion of box alignment results in a marked increase
in translation error; the 75th percentile of translation error
escalates from 0.8 m to 1.4 m. Interestingly, the rotation error
remains relatively stable, even in the absence of box alignment.
This observation underscores that the box alignment predom-
inantly contributes to correcting translation errors, which are
often introduced by self-motion distortion.
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VII. CONCLUSION

In this paper, we introduce BB-Align, a lightweight, two-
stage pose recovery framework tailored for V2V cooperative
perception. Utilizing Bird’s-eye View (BV) images and ob-
ject bounding boxes, the framework accurately estimates the
relative pose between two cars while minimizing commu-
nication costs. Designed as a non-training-based, plug-and-
play module, BB-Align integrates seamlessly with existing
V2V systems. The method combines Log-Gabor filter-based
BV image matching with subsequent object bounding box
alignment. Our evaluation on the real-world V2V dataset
showed that BB-Align outperforms an existing graph matching
method [28] and achieves pose errors under 1m and 1◦ in
80% of cases within a 70m range. Integration into cooperative
object detection systems results in a doubling of Average
Precision (AP) in severe pose error scenarios. Future work will
focus on enhancing the time efficiency of BV image matching.
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